p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.63D4, C42⋊6(C2×C4), (C2×C4).19C42, C4.15(C2×C42), C42⋊C2⋊14C4, C42⋊6C4⋊10C2, (C22×C4).35Q8, C23.22(C4⋊C4), M4(2)⋊19(C2×C4), (C2×M4(2))⋊13C4, (C22×C4).254D4, C23.537(C2×D4), (C23×C4).217C22, (C2×C42).231C22, C23.190(C22⋊C4), C4.16(C2.C42), (C22×C4).1299C23, C2.4(C42⋊C22), (C22×M4(2)).11C2, C42⋊C2.257C22, (C2×M4(2)).296C22, C22.9(C2.C42), (C2×C4⋊C4)⋊21C4, C4.25(C2×C4⋊C4), C22.9(C2×C4⋊C4), C4⋊C4.185(C2×C4), (C2×C4).38(C4⋊C4), (C2×C4).178(C2×Q8), (C2×C4).1492(C2×D4), C4.103(C2×C22⋊C4), (C2×C4).516(C22×C4), (C22×C4).253(C2×C4), (C2×C42⋊C2).6C2, (C2×C4).251(C22⋊C4), C22.104(C2×C22⋊C4), C2.10(C2×C2.C42), SmallGroup(128,465)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.63D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, eae-1=ad=da, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=bcde3 >
Subgroups: 340 in 202 conjugacy classes, 108 normal (32 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C22×C4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C42⋊6C4, C2×C42⋊C2, C22×M4(2), C24.63D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C2.C42, C42⋊C22, C24.63D4
(1 19)(2 24)(3 21)(4 18)(5 23)(6 20)(7 17)(8 22)(9 26)(10 31)(11 28)(12 25)(13 30)(14 27)(15 32)(16 29)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 5)(3 7)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 31 18)(2 17 32 16)(3 11 25 20)(4 19 26 10)(5 13 27 22)(6 21 28 12)(7 15 29 24)(8 23 30 14)
G:=sub<Sym(32)| (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,26)(10,31)(11,28)(12,25)(13,30)(14,27)(15,32)(16,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,5)(3,7)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,31,18)(2,17,32,16)(3,11,25,20)(4,19,26,10)(5,13,27,22)(6,21,28,12)(7,15,29,24)(8,23,30,14)>;
G:=Group( (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,26)(10,31)(11,28)(12,25)(13,30)(14,27)(15,32)(16,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,5)(3,7)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,31,18)(2,17,32,16)(3,11,25,20)(4,19,26,10)(5,13,27,22)(6,21,28,12)(7,15,29,24)(8,23,30,14) );
G=PermutationGroup([[(1,19),(2,24),(3,21),(4,18),(5,23),(6,20),(7,17),(8,22),(9,26),(10,31),(11,28),(12,25),(13,30),(14,27),(15,32),(16,29)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,5),(3,7),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,31,18),(2,17,32,16),(3,11,25,20),(4,19,26,10),(5,13,27,22),(6,21,28,12),(7,15,29,24),(8,23,30,14)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4Z | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | C42⋊C22 |
kernel | C24.63D4 | C42⋊6C4 | C2×C42⋊C2 | C22×M4(2) | C2×C4⋊C4 | C42⋊C2 | C2×M4(2) | C22×C4 | C22×C4 | C24 | C2 |
# reps | 1 | 4 | 2 | 1 | 4 | 12 | 8 | 5 | 2 | 1 | 4 |
Matrix representation of C24.63D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 16 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 16 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 1 | 0 | 0 | 0 | 0 |
2 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 2 |
0 | 0 | 1 | 0 | 1 | 16 |
0 | 0 | 7 | 13 | 0 | 16 |
0 | 0 | 6 | 0 | 0 | 1 |
13 | 16 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 16 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,15,1,1,16,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,1,16,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,2,0,0,0,0,1,13,0,0,0,0,0,0,16,1,7,6,0,0,0,0,13,0,0,0,0,1,0,0,0,0,2,16,16,1],[13,0,0,0,0,0,16,4,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,15,1,1,16,0,0,0,1,0,0] >;
C24.63D4 in GAP, Magma, Sage, TeX
C_2^4._{63}D_4
% in TeX
G:=Group("C2^4.63D4");
// GroupNames label
G:=SmallGroup(128,465);
// by ID
G=gap.SmallGroup(128,465);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,723,2019,248,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations